Experimental Study on the Effects of Alumina Abrasive Particle Behavior in MR Polishing for MEMS Applications

نویسندگان

  • Dong-Woo Kim
  • Myeong-Woo Cho
  • Tae-Il Seo
  • Young-Jae Shin
چکیده

Recently, the magnetorheological (MR) polishing process has been examined asa new ultra-precision polishing technology for micro parts in MEMS applications. In theMR polishing process, the magnetic force plays a dominant role. This method uses MRfluids which contains micro abrasives as a polishing media. The objective of the presentresearch is to shed light onto the material removal mechanism under various slurryconditions for polishing and to investigate surface characteristics, including shape analysisand surface roughness measurement, of spots obtained from the MR polishing process usingalumina abrasives. A series of basic experiments were first performed to determine theoptimum polishing conditions for BK7 glass using prepared slurries by changing the processparameters, such as wheel rotating speed and electric current. Using the obtained results,groove polishing was then performed and the results are investigated. Outstanding surfaceroughness of Ra=3.8nm was obtained on the BK7 glass specimen. The present resultshighlight the possibility of applying this polishing method to ultra-precision micro partsproduction, especially in MEMS applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Carbide Particle Size on the Microstructure, Mechanical properties, and Wear Behavior of HVOF-sprayed WC-17% Co Coatings

This study investigates the effect of carbide particle size on the microstructure, mechanical properties, and abrasive wear resistance of WC-17%Co HVOF-sprayed coatings. The characteristics of WC-1, WC-2, and WC-3 coatings with carbide sizes of 1 µm, 0.9 µm, and 0.5 µm, respectively, were also investigated. WC-1 coating experienced the maximum carbon loss of 42%, while WC-2 and WC-3 coatings un...

متن کامل

An Experimental Investigation on Surface Roughness and Edge Chipping in Micro Ultrasonic Machining

Surface quality including surface roughness and edge chipping is a key process measure in micro ultrasonic machining (Micro-USM) as an efficient process for micromachining of hard and brittle materials. Process parameters such as ultrasonic vibration amplitude, static load, type of tool material, type and size of abrasive particles and slurry concentration can influence the surface quality. How...

متن کامل

An Experimental Investigation on Surface Roughness and Edge Chipping in Micro Ultrasonic Machining

Surface quality including surface roughness and edge chipping is a key process measure in micro ultrasonic machining (Micro-USM) as an efficient process for micromachining of hard and brittle materials. Process parameters such as ultrasonic vibration amplitude, static load, type of tool material, type and size of abrasive particles and slurry concentration can influence the surface quality. How...

متن کامل

Acidic magnetorheological finishing of infrared polycrystalline materials.

Chemical-vapor-deposited (CVD) ZnS is an example of a polycrystalline material that is difficult to polish smoothly via the magnetorheological finishing (MRF) technique. When MRF-polished, the internal infrastructure of the material tends to manifest on the surface as millimeter-sized "pebbles," and the surface roughness observed is considerably high. The fluid's parameters important to develop...

متن کامل

Mechanical Removal in CMP of Copper Using Alumina Abrasives

Results from experiments on the removal of copper using chemical mechanical polishing ~CMP! by alumina abrasives suspended in deionized water are reported. The experiments were carried out in a benchtop polishing tool using IC1000 perforated pads and SUBA 500 pads. The removal rate was measured over a good range of values of the relative velocity and pressure, and for different values of the ab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008